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Abstract—We present a novel approach for classi-

fying pre-segmented laser scans of road users with
consideration of real-time capability for applications
in automated vehicles. Our classification approach
uses 2.5D Convolutional Neural Networks (CNNs) to
process range data as well as intensity information
retrieved from reflected beams. We do not solely rely
on publicly available laser scan datasets, which lack
several features, but we provide an additional dataset
from real-world sensor recordings, annotated by a
tracking-based automatic labeling process.
We evaluate the classification performance of our
CNN regarding different feature configurations. For
training, we use automatically and manually labeled
data as well as mixtures with other public datasets.
The results show promising classification capabilities.
Training with automated labels shows similar results,
providing a possibility to avoid the need for manual
editing expense.

I. INTRODUCTION

Automated driving has a huge potential to increase
traffic safety for the driver himself and for other road
users. Environment perception is a crucial task for auto-
mated vehicles, because it has to replace all tasks that
were formerly accomplished by human visual perception,
e.g. localizing within lanes, classifying other roads users
or determining their velocities. Road user classification
also impacts behavioral decisions.

Automated vehicles are not restricted to rely on visual
imagery for environment perception only, but utilize
various kinds of sensors. Among those are LiDAR-based
sensors, which sample the environment by a large num-
ber of point-like distance measurements, providing range
information in high density and resolution.

In order to process sensor data, Deep Learning is an
alternative to conventional algorithms. Neural Networks
are often applied to realize applications in the automotive
domain [1]-[6].

In recent years, CNNs have shown impressive results in
image classification tasks [7]-[9]. As a consequence, CNNs
are applied to range data as well. Architectures that were

designed for image data processing, can be utilized for
this purpose [10]-[13]. Those are typically referred to as
2.5D CNNs. Alternatively, three-dimensional convolution
can be performed. However, the need for discretization
and the additional dimension lead to increased computa-
tional costs, which leaves 2.5D CNNs as the more suitable
approach for achieving real-time capability for road user
classification tasks.

Within the project Stadtpilot [14], the TU Braun-
schweig develops an experimental automated vehicle that
incorporates a Velodyne HDL-64E laser scanner for en-
vironment perception. The sensor provides dense range
and intensity data, as shown in Fig. 1. To tackle the
need for training data required for Deep Learning-based
approaches, we utilize an already available object track-
ing system [15], [16] to automatically label road users
in consecutive laser scans. Apart from large amounts of
data generated by this approach, we manually annotate a
small subset in order to provide a ground truth for valida-
tion and testing. This also serves as a dataset for training
with manually labeled samples. The contributions of our
work are summarized as follows:

o Provision of a new dataset, with labeled road users in
the scanner’s entire viewing range, containing 120 000
automatically labeled laser scans (~1.5 mio. objects)
distributed among seven classes.

o Provision of 850 manually labeled laser scans, along
with the developed labeling tool.

o Road user classification using a 2.5D CNN approach.

o Demonstration of increased classification accuracy by
additionally exploiting intensity data.

e Comparison of training results with manually and
automatically labeled data, showing that the latter
achieves comparable results if label noise is properly
considered.

To the best of our knowledge, we are the first to provide a

laser scan dataset labeled with road users in the scanner’s

entire field of view. Besides, we are the first to perform a

detailed classification of road users using a 2.5D CNN

that processes range and intensity data from a laser
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Fig. 1. Range and intensity values provided by the vehicle’s laser scanner.

scanner.

This paper is structured as follows. Sec. II reviews the
state of the art of laser scan processing with CNNs in
terms of road user classification. Sec. I1I briefly describes
the properties and features of our dataset. Sec. IV gives
insights into the design of the presented 2.5D CNN.
Sec. V and VI discuss the results obtained by using
manually and automatically labeled data, respectively.

II. RELATED WORK

Approaches to process laser range data with CNNs can
be divided into two categories. Conventional 2D archi-
tectures for CNN-based image processing can be utilized
by including range measurements as additional input.
3D CNNs add an additional dimension and can thus be
considered as an extension of 2D CNNs. Because of their
high computational demands, they are not considered in
the following.

It is known, that the utilization of spatial informa-
tion as input to Neural Networks enhances classification
performance, compared to solely using RGB data [17].
The first approaches that included spatial information in
CNNs were using RGB-D images [10]-[13]. Herein, the
range channel is handled differently: Eitel et al. [10] and
Schwarz et al. [11] code range as RGB colors, which allows
the CNN to benefit from already available, pre-trained
architectures. The fact that range data has successfully
been used without recoding it as RGB, as done by Socher
et al. [12] and Alexandre [13], leads to the conclusion that
CNNs are not limited to RGB data processing, but are
able to extract features directly from range information.

A 25D CNN is utilized by Li et al. [18] to detect
vehicles in a laser scan by producing objectness scores
and bounding box proposals. The laser scan is coded
in cylindrical coordinates using points’ heights above
ground and range information. For the same purpose,
Chen et al. [19] use LIDAR data in multiple views (bird’s
eye and front view, including intensity values) and RGB
data. Dewan et al. [20] perform a semantic classification
of laser scans. Using a Fully Convolutional Network
(FCN), each point of a scan is classified in either movable,
stationary or moving. A. Zelener and I. Stamos [21]
perform a segmentation of laser scans regarding vehicles
and background. The scans are collected by Google Street
View cars. Range, height and two angular channels are

used as input for a CNN that labels patches of the laser
scan.

A more detailed segmentation in cars, bicycles and
pedestrians is obtained by Wu et al. [22]. They use
a FCN with range and intensity data as input, which
is constructed from 3D point clouds. Training data is
enhanced by simulated data, improving the network’s
performance. Since those approaches use range, height
and intensity values with a 2.5D CNN, they are the
most related work to ours regarding object detection.
In contrast to Wu et al., we perform a more detailed
classification of previously segmented objects instead of
a segmentation and improve our network’s performance
by using height values.

Publicly available datasets providing 3D range data

In terms of dataset size and number of classes, only
the widely-used KITTI Vision Benchmark Suite [23] is
suitable for our demands regarding Deep Learning-based
road user classification. However, the main drawback of
the KITTT dataset is the lack of labels in the rearward
half of the laser scan, due to the front camera-based
labeling procedure. Half labeled scans constrain training
procedures and model architectures, as presented by
Li [24], where bounding box predictions can be made
only for a scan’s front half. Our dataset overcomes this
drawback by providing labels in the scanner’s entire field
of view, since our labeling procedure is not camera-based,
but labels point clouds directly.

II1I. THE TUBS RoAD USER DATASET

The following section describes the features and prop-
erties of our dataset. The set contains automatically and
manually labeled laser scans, with labels for point cloud
data as well as information about tracked objects. Both
are available within the entire field of view of the sensor,
as shown in Fig. 2. In addition, information about the
host vehicle’s movement is provided. In order to generate
large amounts of automatically labeled data, we take
advantage of an existing object tracking system. A subset
is reviewed manually to provide more accurate ground
truth information.

Each laser scan consists of 128000 range and intensity
measurements, respectively. They are organized in 64 lay-
ers and 2000 channels, based on the sensor’s resolution.

2000
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Fig. 2. Laser scan of the TUBS Road User Dataset, labeled with
road users in the scanner’s entire field of view.

Scans are provided with 10Hz and in sequences of 50
consecutive scans, within which temporal consistency is
ensured.

The training dataset contains 120 000 scans (=1.5 mio.
objects). A small manually labeled dataset (850 scans,
~36 000 objects) is provided for validation and testing
purposes. Currently the following labels are supported:
Cars, vans, trucks, motorbikes, pedestrians, bicycles. A
meta-class movable is available for all undefined, yet
moving objects (e. g. if the class cannot be determined or
is not encoded yet). All remaining points are labeled as
stationary or part of the road surface. Information about
tracked objects includes pose and extent of bounding
boxes as well as dynamic properties and class labels.

IV. RoAD USER CLASSIFICATION

The following section describes our road user classifi-
cation approach based on a 2.5D CNN. Its architecture
is presented, and details about the training procedure
are addressed, such as normalization strategies and data
representations. The classification process is performed
on pre-segmented point clouds, which are provided by
preprocessing stages of the mentioned object tracking
system, and is done independently for each segment. Such
a segment is denoted as object in the following.

A. CNN Architecture

For most experiments, a rather simple CNN architec-
ture consisting of two convolutional (conv) and two fully
connected (fc) layers is used, as shown in Fig. 3. In order
to demonstrate the principle classification capability of
a 2.5D approach, more complex architectures weren’t
chosen on purpose.

Input of the network can consist of up to three
modalities!, illustrated in Fig. 4. Both range and height
above ground modalities provide geometric information,

1The term modality is introduced here to provide a distinction
from the term channel. Although from the network’s point of view
modalities are treated as (image-like 2D) input channels, we would
like to put emphasize on the different information represented by
the mentioned types of data.

whereas the intensity modality provides information
about the object’s surface, namely its reflectivity for near-
infrared radiation. The latter might be useful for the
detection of high-reflective features like vehicle lights or
license plates, but also for distinction of surface materials.
In order to fully cover objects even close to the scanner,
crops (explained below) are required to contain up to 400
columns of the laser scan. This leads to a high overall
number of neurons (1.6 mio., 100.4 mio. parameters).

B. Sample generation and performance metrics

Training, validation and test samples were generated
by cropping objects out of labeled laser scans. Samples
for the stationary class were extracted algorithmically
by randomly taking crops that are not close to any
movable object. We manually labeled 850 laser scans and
split them into validation (450) and testing sets (400),
resulting in 36217 manually labeled objects in total.
Table I shows the class distribution of these datasets as
well as for the automatically generated training dataset.

Classification performance as well as the ability to
separate stationary from movable objects are in focus of
this paper. The latter, referred to as detection perfor-
mance, is evaluated as a two-class-problem (movable vs.
stationary) by merging all different object classes but the
class stationary.

For the detection performance, precision, recall, fi-score,

False Positive Rate (FPR) and True Negative Rate

(TNR) metrics are applied. The classification perfor-

mance is evaluated using:

e Top-1 accuracy accset: Ratio of all correctly to all
falsely classified objects in the dataset.

e Mean class accuracy accoy: The arithmetic mean of
all class-specific accuracies.

C. Training procedure

To train our CNN, we applied a weighted cross entropy
loss to balance the dataset in order to make use of all
available samples. The cost function £ is given in Eq. 1
and Eq. 2, where Np denotes the batch size, K the
number of classes, wy, a class specific weight and () a
laser scan crop. Pr and Py denote the target’s probability
for class k and the output probability, respectively. The
weight wy is given by the ratio of the total amount of
samples N7 in the dataset to the class specific amount
Ne¢ (k) in this dataset, amplifying the loss caused by less
common classes in the batch.

Np K
L= % S wn Pr(k | 2) log (Pok | =)

i=1 k=1
(1)
Nt
= (2)
Ne (k)
For all our experiments we used a learning rate
of 1 x 1073 and a batch size of 256. We only considered

objects within 60 m distance because of declining point
density.

wy,
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Fig. 3. Architecture of the proposed 2.5D CNN. 64 x 400 (row X column)-sized crops centered at each processed segment are utilized as
input. The crop’s depth corresponds to the number of input modalities, which differs in our experiments (range, intensity, height above
ground and combinations). The crop is then convolved with 32 filters using a 2 x 4 receptive field with the stride s = 1. The second conv-
layer uses 64 symmetric 2 X 2 filters. Between layers we placed 2 X 2 pooling layers. The convolution layers are followed by two fc-layers
with 1024 and seven neurons (corresponding to seven classes). The last fc-layer has a softmax activation to output class probabilities.
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Fig. 4. Top left: Range channel of an object’s laser scan crop. Brighter colors indicate greater values in all images. Top right: Height
above ground channel, which corresponds to the z-coordinates of points in the Cartesian coordinate system that originates in the scanner’s
center. Bottom left: Intensity channel. Bottom right: Corresponding point cloud.

TABLE I
DISTRIBUTION OF SAMPLES OVER CLASSES WITHIN DIFFERENT DATASETS

movable classes stationary
car van truck motorbike bicycle pedestrian class
abs. rel. (%) abs. rel. (%) abs. rel. (%) abs. rel. (%) abs. rel. (%) abs. rel. (%) abs. rel. (%)
a) 7187 38.6 727 3.9 485 2.6 305 1.6 733 3.9 1079 5.8 8110 43.5
b) 6957 39.2 978 5.5 389 2.2 173 1.0 1759 9.9 545 3.1 6957 39.2
c) 525472 35.1 187424 12.5 55909 3.7 64048 4.3 71385 4.8 67299 4.5 525322 35.1
d) 19048 427 2777 6.2 1037 2.3 (NJA) (NJA) 1557 35 3953 89 16194 363

Row a) and b) correspond to the manually edited validation and test dataset, respectively. Automatically generated samples correspond
to row c). Row d) shows the class distribution of the dataset created from the KITTI Vision Benchmark Suite.
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Fig. 5. Overview of considered data representation approaches, illustrated by the range modality. Left: Plain 64 x 400-sized crop. Center:
Bounding box crop with a 10 x 10 margin. Note the advertising pillar in the car’s background, which provides contradicting features for
the class stationary. Right: 2.5D sparse scan. Here, only points within the 3D bounding box remain for network input.

Weights are initialized with \/2/7N7 with N denoting
the number of neurons, offsets are initialized with zero
(cf. He et al. [25]). Furthermore, we applied weight decay
(a =5 x 107%) to all layers and dropout in the fc-1 layer,
if not stated otherwise. Training was performed using
TensorFlow™ with stochastic gradient decent without
momentum.

D. Data representation and augmentation

Although 400 x 64-sized crops allow for full coverage of
close objects, they also might contain additional objects
with different than the annotated classes, with negative
impact on classification results. By omitting all data
outside an object’s 2D bounding box, which is obtained
by projecting its 3D bounding box onto an depth image-
like representation of the scan, this issue can be solved.
This representation is referred to as bounding box crop.
Its application more than doubled the mean class accu-
racy accom (from /0.3 to 0.7 in early experiments). In
addition, using only points within the 3D bounding box
was considered, denoted as 2.5D sparse scan. Fig. 5 gives
an overview of these representations.

When using the 2.5D sparse scan representation, the
application of dropout in the fc-1 or any other conv-layer
led to a decreasing classification performance. We traced
this effect to the sparse input tensor: Applying dropout
leads to reduction of vital geometric information. Because
dropout does not reduce classification performance when
using bounding box crop, we conclude that the CNN treats
the laser scan as a (focused) image in this case, although
geometric information is partly being lost. On the other
hand, using 2.5D sparse scan representation without any
background information supports the CNN to evaluate
geometric information rather than treating the scan as
an image.

In order to reduce overfitting, we did not take smaller
crops for dataset augmentation, as widely done in image
classification. Instead, the scan is shifted to the left or
right by a random amount of channels. This equals a
simple rotation of the laser scanner itself. Vertical shifting
violates the geometric constrains; thus, it is not applied.

E. Normalization strategy

Different normalization strategies were considered.
Best results were obtained using Global Contrast Nor-

malization (GCN), applied independently to each input
modality ¢, as given in Eq. 3 and 4.

w

h
So= 33 5050 3)

i=1 j=1

I S .7 .7 7§
S(i,j,c) = - - (Z}JC) . .c —
hw Dict Zj:l (S (4,4, ¢) — SC)
V. RESULTS USING MANUALLY LABELED DATA

(4)

In the following we present our results regarding the
training with manually labeled data. This dataset is
utilized to train our network in order to identify each
modality’s effect and the best-performing input modality
configuration. This setup is then used to identify the
global best-performing setup, regarding various data rep-
resentations and normalization strategies. Additionally,
we evaluate our approach on a dataset generated from
the KITTI Vision Benchmark Suite.

We used the comparatively small validation data set
for training, thus omitting online validation. Our CNN is
trained using 2 000 iteration steps for modality setup ex-
periments and 3 000 steps for determining the best overall
setup. A wide variety of experiments was conducted,
including altering crop sizes, initialization and augmen-
tation strategies, normalizations, usage of dropout and
batch normalization, as well as different context margins
for bounding box crop representation.

1) Investigating input modalities: For the following
experiments we chose the 2.5D sparse scan as data
representation and applied different configurations of the
available input modalities. Results are given in Tab. II.
As expected, the usage of all three available modalities
performs best regarding classification and detection per-
formance. Note that using the range modality performs
better than solely using the intensity modality.

TABLE II
RESULTS FOR INPUT MODALITY EXPERIMENTS

accget accom — precision  recall  f FPR TNR
a) 0.74 0.68 0.80 0.94 0.87 0.35 0.65
b)  0.70 0.64 0.82 0.88 0.85 0.29 0.71
c) 0.83 0.71 0.89 0.98 0.93 0.18 0.82
d) 0.83 0.74 0.92 0.96 0.94 0.13 0.87

a) Range. b) Intensity. ¢) Range and intensity. d) Range,
intensity and height above ground. Colored values indicate
best achieved results. (accget: Top-1 accuracy; accon: Mean
Class accuracy; FPR: False Positive Rate; TNR: True Negative
Rate)
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Fig. 6. Confusion matrix for the best-performing global setup

2) Best-performing global setup: In the following, all
three input modalities were employed. In the global setup
experiments, different configurations of normalization
and data representation were applied. The highest accges
score was achieved in experiment a) with the usage of
bounding box crop as data representation, with symmetric
margin of 10 steps. Using the same data representation
in experiment b), but omitting the GCN of the height
channel, yielded the best detection performance (recall
vs. FPR). The highest acccy was achieved in experiment
¢), in which we employed 2.5D sparse scan as represen-
tation and GCN for each channel. The results are shown
in Table III.

Fig. 6 shows the confusion matrix for experiment c).
Highest classification rates were achieved for cars (0.90),
trucks (0.95) and pedestrians (0.88). Bicycles and pedes-
trians get confused easily due to occlusions. The classifi-
cation of an object into car or van is sometimes imprecise,
even when the classification is done by humans. The
high confusion of vans with stationary objects is likely
explained by occluded vans due to their rectangular
shape that resembles walls. A qualitative analysis of
falsely classified vans supports this theory. The reason
for the confusion of motorbikes and cars is originated in
our small test set: It contains only one scooter that is
labeled as a motorbike, which is always falsely classified.
This leads to an over-proportional influence, given that
motorbikes are the scarcest class.

We expect the classification results for our CNN to

TABLE III
RESULTS FOR BEST-PERFORMING GLOBAL SETUP EXPERIMENTS

accget accoMm — precision  recall  fy FPR TNR
a) 0.86 0.72 0.96 0.97 0.96 0.07 0.93
b) 0.85 0.72 0.96 0.98 097 0.06 0.94
c) 0.81 0.76 0.90 093 092 0.15 0.85

Considered configurations are given in Sec. V-2. Colored values
indicate best achieved results. (accget: Top-1 accuracy; accom:
Mean Class accuracy; FPR: False Positive Rate; TNR: True
Negative Rate)

improve if we would use more samples for testing. Cur-
rently, many crops are different poses of the same object
and, therefore, are correlated. This leads to a biased
confusion matrix. A categorization of samples in multiple
levels of difficulty regarding occlusion is planned to fan
out classification results. Furthermore, we expect that the
classification performance of 2.5D CNNs can be improved
by using a deeper architecture while shrinking the input
size. This could be done by down-sampling close objects
to limit the number of parameters and to tackle scale
variance.

3) KITTI dataset evaluation: In order to prove the
capability of our approach to cope with other datasets,
we constructed another dataset using point clouds from
the KITTI Vision Benchmark Suite [23] by sampling 3D
point clouds into 2.5D range and intensity images. Tab. I,
row d) shows the resulting class distribution. Note that
the KITTI dataset does not contain a motorbike class.

Tab. IV summarizes our results regarding the achieved
performance using different dataset combinations for
training and testing. First, we split the KITTI dataset
in 60% training and 40 % test samples. The good per-
formance regarding accse; and acccoy shows that our
approach generally extends to other data sources. The
increase in performance compared to applying the only
TUBS datasets for training and testing is explained by
the correlation of objects in the TUBS dataset resulting
from consecutive point cloud frames. KITTI dataset
currently contains more uncorrelated data.

Next, we applied the TUBS and KITTI dataset for
training and evaluation, respectively, and vice versa.
Both experiments reveal a bad generalization from one
dataset to another, indicating differences between the
datasets within same object classes. Most likely, these
differences result from ground points that are included
in KITTI objects, whereas ground points are filtered
in TUBS objects. In addition, geometric inconsistencies
(e.g. missing points) can occur due to the sampling
method used to construct the 2.5D KITTI dataset from
3D point clouds. Nonetheless, the CNN is able to model
those differences if the datasets are combined as in ex-
periment d). Results are illustrated in Fig. 7. Samples
were selected randomly and equally from both datasets

TABLE IV
RESULTS FOR GENERALIZATION AND DATASET COMBINATION
EXPERIMENTS
Training Test accget acconm prec. recall fi  FPR TNR
KITTI KITTI 0.88 0.86 0.95 0.98 0.97 0.08 0.92
TUBS KITTI 0.80 0.51 0.90 0.94 0.92 0.18 0.82
KITTI TUBS 0.53 0.61 0.68 0.93 0.79 0.64 0.36
mixed mixed 0.90 0.89 0.93 0.97 0.95 0.10 0.90

Blue-colored values indicate best achieved results, red-colored
ones indicate degraded performance compared to using only
TUBS datasets (cf. Sec. V). (accget: Top-1 accuracy; accom:
Mean Class accuracy; FPR: False Positive Rate; TNR: True
Negative Rate)
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Fig. 7. Confusion matrix for the TUBS/KITTI mixed dataset setup

regarding class and specific range. For all generalization
experiments we used 25000 iteration steps due to more
available samples originating from the KITTI dataset.

VI. RESULTS USING AUTOMATICALLY LABELED DATA

To evaluate the performance of a network trained on
automatically labeled data only, we trained a CNN using
the best global setup for acccy found in Sec. V. The
training set includes ~1.5 mio. automatically labeled
samples. We applied an online validation using the man-
ually labeled validation set. We uniformly selected the
same number of randomly chosen samples for each class
to get an approximate value of acccy during training. For
testing we used the same dataset as in Sec. V. Training
was stopped after 20 epochs for runtime reasons and the
best-performing model was selected.

A. Dealing with label noise

Automated labeling using the vehicle’s tracking system
is of course imperfect. Therefore, the dataset is subject
to label noise. As opposed to the usage of manually
data, training with automatically labeled data does not
converge without further measures. Hence, all of the
following methods were applied simultaneously in order
to deal with label noise.

a) Surrogate cost function: The cost function given
in Eq. 2 was additionally weighted by an object’s exis-
tence likelihood, which is applied as an additional factor
to wyg.

b) Label smoothing: The usage of label smoothing
implies the assumption of a prior uniform distribution
regarding a sample’s classification probability. Hence, the
CNN is not forced to perform peak formed predictions,
especially for falsely labeled samples. Szegedy et al.
[26] apply label smoothing to improve generalization.
Applying label smoothing in the presence of label noise
improves convergence significantly without much effort.

¢) Noise layer training: Sukhbaatar et al. [27] add
an additional layer between the softmax output and
actual targets to deal with label noise. Using a special
training procedure, this allows the overall network to
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Fig. 8. Confusion matrix for results with automatically labeled data

learn the label noise distribution. This equals a mapping
of correct labels to the possibly wrong labels in the
dataset and enables the CNN to learn the correct labels
out of noisy training data. The utilization of this method
yielded promising results that will be further inquired in
future work. However, due to a long training process we
omitted that method in this paper’s experiments.

d) Increasing model depth: We found that our sim-
ple CNN architecture given in Fig. 3 had not enough
capacity to cope with noisy labels. Therefore, model
depth has been increased to ten layers, inspired by the
VGG architectures by Simonyan and Zisserman [9].

B. Results

Fig. 8 shows the results for using automatically la-
beled data for training and the TUBS test dataset for
evaluation. Note that the results are almost equal to
the training with manually labeled data (Fig. 6). This
demonstrates the capability of a deeper architecture to
model label noise when using label smoothing. This is
an indicator showing that utilizing automatically labeled
data for training purposes performs on the same level as
relying on manually labeled data only. However, training
with automatically labeled data needs a more complex
architecture, more samples and, therefore, more time.

VII. CONCLUSION

In this paper, we presented a new laser scan dataset
that fills the gap of detailed road user labels in the
scanner’s entire field of view.

We applied this dataset to a road user classification
task using a 2.5D CNN. By optimizing data representa-
tion and normalization strategies, as well as by combin-
ing different datasets, we achieved an overall accuracy
of 0.89. We achieved similar results using automatically
labeled data. This demonstrates the possibility to re-
nounce manual labeling, although the model depth had to
be increased to cope with noisy labels, among other mea-
sures. Our approach extends to different data sources,
as an evaluation on the well-known KITTI dataset has
shown.



In future works we will improve our network architec-
ture, e. g. by down-sampling close objects to use a smaller
input size in order to reduce the network’s parameters.
Furthermore, we will experiment with deeper architec-
tures and compare our results to 3D CNN approaches.
The datasets and the labeling tool will be published by
the end of this year. We encourage the publication of
more manually edited laser scans. Therefore, we invite
the users of our labeling tool to share their work by
contacting us.
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